#### Answer

$(F+G)(5)=4$
$(F+G)(7)=3$

#### Work Step by Step

RECALL:
$(F+G)(x) = F(x) + G(x)$
Using the rule above gives:
$(F+G)(5) = F(5) +G(5)$ and $(F+G)(7)=F(7)+G(7)$
The graph shows that:
$F(5)=1$; $F(7)=-1$
$G(5)=3$; $G(7)=4$
Thus, using the values above give:
$(F+G)(5)=F(5) + G(5)=1+3=4$
$(F+G)(7)=F(7) + G(7) = -1+4=3$