#### Answer

$x=1$

#### Work Step by Step

$\log x=\ln x$
Write the RHS using change-of-base (to base 10)
$\displaystyle \log x=\frac{\log x}{\log e}$
$\displaystyle \log x-\frac{\log x}{\log e}=0$
$\displaystyle \log x(1-\frac{1}{\log e})=0$
Since $(1-\displaystyle \frac{1}{\log e})\neq 0$, it must be that $\log x=0$.
That is, $\quad x=1.$
ALTERNATIVELY, Graphing approach:
Graph $y=\log x$ and $y=\ln x$ on the same coordinate system.
The only intersection point is (1,0),
thus, $x=1.$