Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.8 Problem Solving and Quadratic Functions - 11.8 Exercise Set - Page 757: 58

Answer

$\frac{144}{4+\pi }\text{ in}$.

Work Step by Step

Let $x$ be the length of the first string; then $\left( 36-x \right)$ will be the length of the second string. The area of the circle is $\pi {{r}^{2}}$and the area of the square is ${{s}^{2}}$. It is known that the circumference of the circle is x. Thus, $\begin{align} & x=2\pi r \\ & r=\frac{x}{2\pi } \\ \end{align}$ The perimeter of the square is $\left( 36-x \right)$. $\begin{align} & \left( 36-x \right)=4s \\ & s=\frac{36-x}{4} \\ \end{align}$ The sum of the areas of the circle and the square is, $\begin{align} & A=\pi {{r}^{2}}+{{s}^{2}} \\ & =\pi {{\left( \frac{x}{2\pi } \right)}^{2}}+{{\left( \frac{\left( 36-x \right)}{4} \right)}^{2}} \\ & =\pi \left( \frac{{{x}^{2}}}{4{{\pi }^{2}}} \right)+\left( \frac{1}{16} \right){{\left( 36-x \right)}^{2}} \\ & =\frac{{{x}^{2}}}{4\pi }+\left( \frac{1}{16} \right)\left( 1296-72x+{{x}^{2}} \right) \end{align}$ Further simplify, $\begin{align} & A=\frac{{{x}^{2}}}{4\pi }+\left( \frac{1}{16}\cdot {{x}^{2}} \right)-\left( \frac{1}{16}\cdot 72x \right)+\left( \frac{1}{16}\cdot 1296 \right) \\ & =\frac{{{x}^{2}}}{4\pi }+\left( \frac{{{x}^{2}}}{16} \right)-\left( \frac{72x}{16} \right)\left( \frac{1296}{16} \right) \end{align}$ Now, multiply and divide the first term by 4 to make the denominator common with the second term: $\left( \frac{{{x}^{2}}}{4\pi } \right)=\left( \frac{4{{x}^{2}}}{16\pi } \right)$ Multiply and divide the ${{x}^{2}}$terms by $\pi $ to make the denominator common with the first term: $\left( \frac{{{x}^{2}}}{16} \right)=\left( \frac{\pi {{x}^{2}}}{16\pi } \right)$ The area becomes, $\begin{align} & A=\frac{4{{x}^{2}}}{16\pi }+\left( \frac{\pi {{x}^{2}}}{16\pi } \right)-\left( \frac{72x}{16} \right)\left( \frac{1296}{16} \right) \\ & =\left( \frac{\left( 4+\pi \right)}{16\pi } \right){{x}^{2}}-\left( \frac{72}{16} \right)x+\left( \frac{1296}{16} \right) \end{align}$ Compare with the equation of a parabola $A=a{{x}^{2}}+bx+c$. $a=\frac{4+\pi }{16\pi },b=-\frac{72}{16}$ Area is maximum at vertex. Therefore, the vertex is, $\begin{align} & x=\frac{-b}{2a} \\ & =-\frac{\frac{-72}{16}}{2\left( \frac{4+\pi }{16\pi } \right)} \\ & =-\frac{\frac{-72}{16}}{\left( \frac{4+\pi }{8\pi } \right)} \end{align}$ Further simplify: $\begin{align} & x=\frac{72}{16}\cdot \left( \frac{8\pi }{4+\pi } \right) \\ & =\frac{36\pi }{4+\pi } \end{align}$ The length of the second piece of string is, $\begin{align} & 36-x=36-\frac{36\pi }{4+\pi } \\ & =\frac{144-36\pi +36\pi }{4+\pi } \\ & =\frac{144}{4+\pi } \end{align}$ The length of the first piece of string to make the circle is $x=\frac{36\pi }{4+\pi }$. The length of second piece of string to make the square is $36-x=\frac{144}{4+\pi }$. Therefore, the length of the piece for making a circle is $x=\frac{36\pi }{4+\pi }$ and for making a square is $36-x=\frac{144}{4+\pi }$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.