Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.8 Problem Solving and Quadratic Functions - 11.8 Exercise Set - Page 757: 57

Answer

$l=\frac{24}{\pi +4}\text{ft}$

Work Step by Step

Let $l$ be the length of the rectangle and $w$ be the width of the rectangle. Hence, the area of the rectangle is $l\cdot w$. The area of the semi-circle is $\frac{\pi {{r}^{2}}}{2}$. The radius of the semi circle is half of the width of the rectangle. $r=\frac{w}{2}$ Total area of the window is, $\begin{align} & A=\left( l\cdot w \right)+\left( \frac{\pi {{r}^{2}}}{2} \right) \\ & =\left( l\cdot w \right)+\left( \frac{\pi {{\left( \frac{w}{2} \right)}^{2}}}{2} \right) \end{align}$ The perimeter of the window is, $2l+w+\pi \left( \frac{w}{2} \right)=24$ Solve for $l$, $\begin{align} & 2l+\left( 1+\frac{\pi }{2} \right)w=24 \\ & 2l+\left( \frac{\pi +2}{2} \right)w=24 \\ & 2l=24-\left( \frac{\pi +2}{2} \right)w \end{align}$ Further simplify, $l=12-\left( \frac{\pi +2}{4} \right)w$ Substitute the value of $l$ in the equation of area, $\begin{align} & A=\left( 12-\left( \frac{\pi +2}{4} \right)w \right)\left( w \right)+\frac{\pi }{8}{{w}^{2}} \\ & =12w-\left( \frac{\pi +2}{4} \right){{w}^{2}}+\frac{\pi }{8}{{w}^{2}} \\ & =12w-\left( \frac{2\pi +4-\pi }{8} \right){{w}^{2}} \\ & =12w-\left( \frac{\pi +4}{8} \right){{w}^{2}} \end{align}$ Compare the equation with the equation $A=a{{w}^{2}}+bw+c$ $a=-\left( \frac{\pi +4}{8} \right),b=12$. The vertex of the equation is, $\begin{align} & w=\frac{-b}{2a} \\ & =\frac{-12}{2\cdot \left( -\left( \frac{\pi +4}{8} \right) \right)} \\ & =\frac{48}{\pi +4} \end{align}$ The value of $l$ is, $\begin{align} & l=12-\left( \frac{\pi +2}{4} \right)\left( \frac{48}{\pi +4} \right) \\ & =12-12\left( \frac{\pi +2}{\pi +4} \right) \\ & =\frac{24}{\pi +4} \end{align}$ The value of $r$ is, $\begin{align} & r=\frac{w}{2} \\ & =\frac{\frac{48}{\pi +4}}{2} \\ & =\frac{24}{\pi +4} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.