#### Answer

$\dfrac{14\sqrt{3}}{3} \text{ and } \dfrac{7\sqrt{3}}{3}$

#### Work Step by Step

Since the given acute angle of the right triangle is $30^o,$ then the other acute angle is $60^o.$ The side opposite the $60^o$ angle, $a,$ is $\dfrac{\sqrt{3}}{2}\cdot c,$ where $c$ is the hypotenuse. Hence, \begin{array}{l}\require{cancel}
\dfrac{\sqrt{3}}{2}\cdot c=a
\\\\
\dfrac{\sqrt{3}}{2}\cdot c=7
\\\\
c=7\cdot\dfrac{2}{\sqrt{3}}
\\\\
c=7\cdot\dfrac{2}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{\sqrt{3}}
\\\\
c=\dfrac{14\sqrt{3}}{3}
.\end{array}
The side opposite the $30^o$ angle is half the hypotenuse. With the hypotenuse equal to $\dfrac{14\sqrt{3}}{3},$ then the side opposite the $30^o$ angle is $
\dfrac{7\sqrt{3}}{3}
.$
Hence, the missing sides have measure $
\dfrac{14\sqrt{3}}{3} \text{ and } \dfrac{7\sqrt{3}}{3}
$ units.