Answer
False
Work Step by Step
Checking if the statement is true or false by simplifying the expression ourselves, we obtain:
$\sqrt {8x^{3}y^{2}}$
=$\sqrt 8\times \sqrt {x^{3}}\times\sqrt {y^{2}}$
=$\sqrt {4\times2}\times \sqrt {x^{2}\times x}\times\sqrt {y^{2}}$
=$\sqrt {2^{2}\times2}\times \sqrt {x^{2}\times x}\times\sqrt {y^{2}}$
=$2\sqrt {2}\times x\sqrt {x}\times y$
=$2\times x\times y \times\sqrt 2\times\sqrt x$
=$2\times x\times y \times\sqrt {2\times x}$
=$2xy \times\sqrt {2x}$
=$2xy\sqrt {2x}$
Therefore, $\sqrt {8x^{3}y^{2}}=2xy\sqrt {2x}$.