Answer
$-3x^{2}-6x+20$
Work Step by Step
Since $(-x^{2}+9x-14)$ is subtracted from $(-4x^{2}+3x+6)$, we write the following expression:
$(-4x^{2}+3x+6)-(-x^{2}+9x-14)$
Now, we multiply the second polynomial with $-1$ in order to remove the parenthesis:
$(-4x^{2}+3x+6)-(-x^{2}+9x-14)$
=$-4x^{2}+3x+6+x^{2}-9x+14$
Next, we collect like terms together and then add/subtract them together:
$-4x^{2}+3x+6+x^{2}-9x+14$
=$(-4x^{2}+x^{2})+(3x-9x)+(6+14)$
=$(-3x^{2})+(-6x)+(20)$
=$-3x^{2}-6x+20$