Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 8 - Linear Differential Equations of Order n - 8.5 Oscillations of a Mechanical System - Problems - Page 539: 9

Answer

See below

Work Step by Step

Given: $4\frac{d^2y}{dt^2}+12\frac{dy}{dt}+5y=0$ The motion is governed by the differential equation $\frac{d^2y}{dt^2}+\frac{c}{m}\frac{dy}{dx}+\frac{k}{m}y=0$ with $\frac{c}{m}=3\\ \frac{k}{m}=\frac{5}{4}$ then $(\frac{c}{2m})^2=\frac{9}{4}$ We can see $(\frac{c}{2m})^2 \gt \frac{k}{m}$ Thus, the oscillator is criticially overdamped. The complementary function for the given equation is: $y(t)=c_1e^{-\frac{5}{2}t}+c_2e^{-\frac{t}{2}}$ Since $y(0)=1,y'(0)=-3$ We have $c_2=-\frac{1}{4},c_1=\frac{5}{4}$ The general solution is $y(t)=\frac{5}{4}e^{-\frac{5}{2}t}-\frac{1}{4}e^{-\frac{t}{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.