Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.5 Linear Dependence and Linear Independence - Problems - Page 298: 54

Answer

See below

Work Step by Step

Given $V_n=P_n(R)$ and $S=\{p_1,p_2,...,p_k\}$ Assume without loss of generality that the polynomials are ordered in descending degree: $deg(p_1) \lt deg (p_2) \lt deg (p_3)\lt...\lt deg(p_k)$ Since $deg(c_1p_1+c_2p_2+...+c_{k-1}p_{k-1})\lt deg (p_k)$ and $deg(p_i)=n\\ deg(p_j)=m\\ \rightarrow p_k=a_0+a_1x+a_2x^2+...+a_mx^m$ then $a_m=0\\ c_k=0$ Obtain: $c_1p_1+c_2p_2+...+c_kp_k=0\\ \rightarrow c_1p_1+c_2p_2+...+c_{k-1}p_{k-1}=0$ Since $deg (P_{k-1}) \gt deg (\sum c_kp_k)$ we have $c_{k-1}=0$ If we repeat this $k-3$ times we get $c_{k-2}=c_{k-3}=...=c_1=0$ Hence, $p_i$ are linearly independents.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.