Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.2 Vector Spaces - Problems - Page 263: 24

Answer

See below

Work Step by Step

$A1$. Suppose $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix},B=\begin{bmatrix} e & f \\ g & h \end{bmatrix} \in M_2(R)$ Then $A \oplus B=A.B=\begin{bmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{bmatrix}\in M_2(R)$ Hence, $M_2(R)$ is closed under addtion. $A2$. Suppose $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(R)$ and $k \in R$ Then $c.A=cA=\begin{bmatrix} a & b \\ c & d \end{bmatrix}=A=\begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}$ Hence, $M_2(R)$ is closed under scalar multiplication. $A3$. Suppose $A,B \in M_2(R)$ Then $A \oplus B=A.B=B.A=B \oplus A$ $A4$. Suppose $A,B,C \in M_2(R)$ then $(A \oplus B) \oplus C=(A.B).C=A.(B.C)=A \oplus (B \oplus C)$ $A5$. Suppose $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(R)$ then $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \oplus \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} a & b \\ c & d \end{bmatrix}.\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ Hence, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is zero vector $A6$. Suppose $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(R)$ then $A \oplus (-A)=A.(-A)=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Matrix $-A$ exists only if $rank (A)=2$ Hence, $A6$ is not satisfied. $A7$. Suppose $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(R)$ then $1.A=1.\begin{bmatrix} a & b \\ c & d \end{bmatrix}=\begin{bmatrix} 1a & 1b \\ 1c & 1d \end{bmatrix}=\begin{bmatrix} a & b \\ c & d \end{bmatrix}=A$ $A8$. Suppose $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(R)$ and $r,s \in R$ then $(rs)A=(rs)\begin{bmatrix} a & b \\ c & d \end{bmatrix}=\begin{bmatrix} (rs)a & (rs)b \\ (rs)c & (rs)d \end{bmatrix}=\begin{bmatrix} r(sa) & r(sb) \\ r(sc) & r(sd) \end{bmatrix}=r\begin{bmatrix} sa & sb \\ sc & sd \end{bmatrix}=r(sA)$ $A9$. Suppose $A,B \in M_2(R)$ and $r \in R$ then $r(A \oplus B)=r(A.B)=r.A.B$ and $rA \oplus rB=(rA).(rB)=r^2.A.B$ Hence, $r.A.B \ne r^2.A.B$ $A10$. Suppose $A \in M_2(R)$ and $r,s \in R$ then $(r+s)A=rA+sA$ and $rA \oplus sA=rA.sA$ We can see that $rA + sA \ne rA.sA$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.