Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.2 Vector Spaces - Problems - Page 263: 22

Answer

See below

Work Step by Step

$A1$. Suppose $u=(x_1,y_1),v=(x_2,y_2) \in V=R^2$ Then $u+v=(x_1,y_1) \oplus (x_2,y_2)=(x_1-x_2,y_1-y_2) \in R^2$ Hence, $R^2$ is closed under addtion. $A2$. Suppose $u=(x_1,y_1),v=(x_2,y_2) \in R^2, c \in R$ Then $c.u=c(x_1,y_1)=(-cx_1,-cy_1)$ Hence, $R^2$ is closed under scalar multiplication. $A3$. Suppose $u=(x_1,y_1),v=(x_2,y_2) \in V$ Then $u \oplus v=(x_1,y_1) \oplus (x_2,y_2)=(x_1-x_2,y_1-y_2)\\v \oplus u=(x_2,y_2)\oplus (x_1,y_1)=(x_2-x_1) \oplus (y_2-y_1)$ $A4$. Suppose $u=(x_1,y_1),v=(x_2,y_2),z=(x_3,y_3) \in V$ then $(u \oplus v) \oplus z\\ =((x_1,y_1) \oplus (x_2,y_2)) \oplus (x_3,y_3)\\ =((x_1-x_2,y_1-y_2))\oplus (x_3-y_3)\\ =((x_1-x_2)-x_3, ((y_1-y_2)-y_3)\\ =(x_1-x_2-x_3,y_1-y_2-y_3)$ $u \oplus (v \oplus z)\\ =((x_1,y_1) \oplus (x_2,y_2)) \oplus (x_3,y_3)\\ =(x_1,y_1)\oplus (x_2-x_3,y_2-y_3)\\ =(x_1-(x_2-x_3), (y_1-(y_2-y_3))\\ =(x_1-x_2+x_3,y_1-y_2+y_3)$ Thus, $(u \oplus v) \oplus z \ne u \oplus (v \oplus z)$ $A5$. Suppose $u=(x_1,y_1) \in R^+$ then $u+0=(x_1,y_1)\oplus (0,0)=(x_1-0,y_1-0)=(x_1,y_1)$ Hence, $0$ is zero vector $A6$. Suppose $u=(x_1,y_1) \in V$ then $u \oplus u=(x_1,y_1) \oplus (x_1,y_1)=(x_1-x_1,y_1-y_1)=(0,0)$ Hence, additive inverse of $(x_1,y_1)$ is also $u=(x_1,y_1)$. $A7$. Suppose $u=(x_1,y_1) \in V$ then $-1 \oplus u=-1 \oplus (x_1,y_1)=((-1).x_1,-(-1).y_1)=(x_1,y_1)=u$ $A8$. Suppose $u=(x_1,y_1) \in V$ and $r,s \in R^+$ then $(rs) \oplus u\\ =(rs) \oplus (x_1,y_1)\\ =(-(rs)(x_1,-(rs)y_1))\\ =(-rsx_1,-rsy_1)$ and $r\odot (s \odot u)\\ =r \odot (-sx_1,-sy_1)\\ =(-(r(-sx_1),-r(-sy_1))\\ =(rsx_1,rsy_1)$ We can see that $(rs) \odot u \ne r \odot (s\odot u)$ $A9$. Suppose $u=(x_1,y_1),v=(x_2,y_2) \in V$ and $r \in R$ then $r \odot (u\oplus v)\\ =r \odot (x_1,y_1 \oplus x_2,y_2))\\ =r \odot (x_1-x_2, y_1-y_2)\\ =(-r(x_1-x_2),-r(y_1-y_2))\\ =(-rx_1+rx_2,-ry_1+ry_2)$ $r \odot u\oplus r \odot v\\ =r \odot (x_1,y_1) \oplus r \odot (x_2,y_2))\\ =(-rx_1,-rx_2)\oplus (rx_2, -ry_2)\\ =(-rx_1-(-rx_2),-ry_1-(-ry_2))\\ =(-rx_1+rx_2,-ry_1+ry_2)$ $A10$. Suppose $u=(x_1,y_1) \in V$ and $r,s \in R$ then $(r+s)\odot u\\ (r+s) \odot (x_1,y_1)\\ =(-(r+s)x_1,-(r+s)y_1)=(-rx_1-sx_1,-ry_1-sy_1)$ and $r \odot u \oplus s \odot u\\ =r \odot (x_1,y_1)\oplus s \odot (x_1,y_1)\\ =(-rx_1,-ry_1)\oplus (-sx_1,-sy_1)\\ =(-rx_1-(-sx_1),-ry_1-(-sy_1))\\ =(-rx_1+sx_1,-ry_1+sy_1)$ We can see that $(r+s)\oplus u \ne r \odot u \oplus s \odot u$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.