Answer
See below
Work Step by Step
Given $3x_1+4x_2+5x_3=1\\
2x_1+10x_2+x_3=1\\4x_1+x_2+8x_3=1$
To find the inverse of $A$, we obtain augmented matrix:
$\begin{bmatrix}
3 & 4 & 5| 1&0 & 0\\2 & 10 & 1| 0 & 1 & 0\\ 4 & 1 & 8| 0 & 0 & 1
\end{bmatrix} \approx \begin{bmatrix}
1 & \frac{4}{3}& \frac{5}{3}| \frac{1}{3}&0 & 0\\2 & 10 & 1| 0 & 1 & 0\\4& 1 & 8| 0 & 0 & 1
\end{bmatrix} \approx \begin{bmatrix}
1 & \frac{4}{3}& \frac{5}{3}| \frac{1}{3}&0 & 0\\0& \frac{22}{3}& -\frac{7}{3}| -\frac{2}{3} & 1 & 0\\0& -\frac{13}{3} & \frac{4}{3}| -\frac{4}{3} & 0 & 1
\end{bmatrix} \approx \begin{bmatrix}
1 & \frac{4}{3}& \frac{5}{3}| \frac{1}{3}&0 & 0\\0&1& -\frac{7}{22}| -\frac{1}{11}& \frac{3}{22} & 0\\0& -\frac{13}{3} & \frac{4}{3}| -\frac{4}{3} & 0 & 1
\end{bmatrix} \approx \begin{bmatrix}
1 & 0 & \frac{23}{11}| \frac{5}{11}& -\frac{2}{11} & 0\\0&1& -\frac{7}{22}| -\frac{1}{11}& \frac{3}{22} & 0\\0& 0 & \frac{-1}{22}| -\frac{19}{11} & \frac{13}{22} & 1
\end{bmatrix} \approx \begin{bmatrix}
1 & 0 & \frac{23}{11}| \frac{5}{11}& -\frac{2}{11} & 0\\0&1& -\frac{7}{22}| -\frac{1}{11}& \frac{3}{22} & 0\\0& 0 &1|38 &-13& 22
\end{bmatrix} \approx \begin{bmatrix}
1 & 0 & 0| -79& 27 &46\\0&1& 0|12& -4 & -7\\0& 0 &1|38 &-13& 22
\end{bmatrix}$
Hence, $A^{-1}= \begin{bmatrix}
-79 & 27 & 46\\12& -4 & -7\\38 &-13& 22
\end{bmatrix}$
Hence, $\begin{bmatrix}
x_1\\x_2\\x_3
\end{bmatrix}=\begin{bmatrix}
-79 & 27 & 46\\12& -4 & -7\\38 &-13& 22
\end{bmatrix}\begin{bmatrix}
1\\1\\1
\end{bmatrix}=\begin{bmatrix}
-6\\1\\3
\end{bmatrix}$