Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.6 The Inverse of a Square Matrix - Problems - Page 179: 45

Answer

See below

Work Step by Step

Given $A=\begin{bmatrix} 5 & 9 & 17 \\7 & 21 & 13\\27 & 16 & 8 \end{bmatrix}$ To find the inverse of $A$, we obtain augmented matrix: $\begin{bmatrix} 5 & 9 & 17 | 1&0 & 0\\7 & 21 & 13| 0 & 1 & 0 \\ 27 & 16 & 8 | 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & \frac{9}{5}& \frac{17}{5} | \frac{1}{5}&0 & 0\\7 & 21 & 13| 0 & 1 & 0 \\ 27 & 16 & 8 | 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & \frac{9}{5}& \frac{17}{5} | \frac{1}{5}&0 & 0\\0& \frac{42}{5} & -\frac{54}{5}| -\frac{7}{5} & 1 & 0 \\ 0 & -\frac{163}{5} & -\frac{419}{5} | -\frac{27}{5} & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & \frac{9}{5}& \frac{17}{5} | \frac{1}{5}&0 & 0\\0&1& -\frac{9}{7}| -\frac{1}{6} & \frac{5}{42} & 0 \\ 0 & -\frac{163}{5} & -\frac{419}{5} | -\frac{27}{5} & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 0& \frac{40}{7} | \frac{1}{2}&-\frac{3}{14} & 0\\0&1& -\frac{9}{7}| -\frac{1}{6} & \frac{5}{42} & 0 \\ 0 & 0 & -\frac{880}{7} | -\frac{65}{6} & \frac{163}{42}& 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 0& \frac{40}{7} | \frac{1}{2}&-\frac{3}{14} & 0\\0&1& -\frac{9}{7}| -\frac{1}{6} & \frac{5}{42} & 0 \\ 0 & 0 & 1 | \frac{91}{1056} & -\frac{163}{5280}& -\frac{7}{880} \end{bmatrix} \approx \begin{bmatrix} 1 & 0&0 | \frac{1}{132}&-\frac{5}{132} & \frac{1}{22}\\0&1&0| -\frac{59}{1056} & \frac{419}{5280} & -\frac{9}{880} \\ 0 & 0 & 1 | \frac{91}{1056} & -\frac{163}{5280}& -\frac{7}{880} \end{bmatrix}$ Hence, $A^{-1}= \begin{bmatrix} \frac{1 }{132} & \frac{-5}{132}&\frac{1}{22}\\-\frac{59}{1056} & \frac{419}{5280} & \frac{-9}{880}\\\frac{91}{1056} & -\frac{163}{5280}& -\frac{7}{880} \end{bmatrix}$ where $\Delta \ne0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.