Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.1 Definition of the Laplace Transform - Problems - Page 676: 35

Answer

See below

Work Step by Step

Given: $e^{ibt}=\cos bt+i\sin bt$ The Laplace Transform can be written as: $L[e^{ibt}]=\int_{0}^{\infty} e^{-st} f(t) dt $ Now, $L[e^{ibt}]=\int_{0}^{\infty} e^{-(s-ib)t} dt\\ \rightarrow L[e^{ibt}]=\frac{1}{s-ib}$ Let $\frac{1}{s-ib}\times\frac{s+ib}{s-ib}=\frac{s}{s^2+b^2}+\frac{ib}{s^2+b^2}$ Since $L[\cos bt]=Re(L[e^{ibt}])\\ L[\sin bt]=Im(L[e^{ibt}])$ we have $\frac{s}{s^2+b^2}+\frac{ib}{s^2+b^2}$$=L[\cos bt]+L[i\sin bt]\\ =L[\cos bt]+iL[\sin bt]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.