Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.1 Definition of the Laplace Transform - Problems - Page 675: 8

Answer

$$L[f(t)]=L[2t]= \frac{2}{s^2}$$

Work Step by Step

Given $$f(t)=2t$$ So, we get \begin{aligned} L[f(t)] & =\int_{0}^{\infty} e^{-s t}f(t) \ d t\\ & =\int_{0}^{\infty} e^{-s t}(2t) d t \\ &=2\int_{0}^{\infty} t e^{-s t} d t\\ \text{let}\ I_1=\int_{0}^{\infty} t e^{-s t} d t \ \ \ \ \ \ \ \ \ \ \\ \text{integrate with partition} \end{aligned} let $$u=t, \ \ \ \ \ du=e^{-st}dt$$ $$du=dt, \ \ \ \ \ v=\ -\frac{1}{s}e^{-st}$$ so, we get \begin{aligned} I_1&= uv |_0^{\infty}- \int_{0}^{\infty} v \ du \\ &= -\frac{t}{s}e^{-st} |_0^{\infty}+\int_{0}^{\infty} \frac{1}{s}e^{-st} \ dt \\ &=0- \frac{1}{s^2}e^{-st}|_{0}^{\infty} \\ &= \frac{1}{s^2} \end{aligned} So, we get $$L[f(t)]=L[2t]= \frac{2}{s^2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.