Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 19

Answer

\[y(x)=-x\left[1+\frac{1}{\ln (Cx)}\right]\]

Work Step by Step

\[x^2\frac{dy}{dx}=y^2+3xy+x^2\] \[\frac{dy}{dx}=\frac{y^2}{x^2}+\frac{3y}{x}+1\;\;\;\ldots (1)\] Substitute $\: y=Vx\;\;\;\ldots (2)$ Differentiate (2) with respect to $x$ \[\frac{dy}{dx}=V+x\frac{dV}{dx}\;\;\;\ldots (3)\] From (1),(2) and (3) \[V+x\frac{dV}{dx}=V^2+3V+1\] \[x\frac{dV}{dx}=(V+1)^2\] Separating variables, \[(V+1)^{-2}dV=\frac{1}{x}dx\] Integrating, \[\int (V+1)^{-2}dV=\int\frac{1}{x}dx+\ln C\] Where $\ln C$ is constant of integration \[\frac{(V+1)^{-1}}{-1}=\ln x+\ln C\] \[\frac{-1}{V+1}=\ln (Cx)\] \[V+1=\frac{-1}{\ln (Cx)}\] \[V=-1-\frac{-1}{\ln (Cx)}\] From (2) \[\frac{y}{x}=-\left[1+\frac{1}{\ln (Cx)}\right]\] \[y=-x\left[1+\frac{1}{\ln (Cx)}\right]\] Hence general solution of (1) is \[y(x)=-x\left[1+\frac{1}{\ln (Cx)}\right]\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.