Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 17

Answer

$\rightarrow (x-y)=C(y-2x)^2(x+y)$

Work Step by Step

Given: $$\frac{dy}{dx}=\frac{y^2+2xy-2x^2}{x^2-xy+y^2}$$ Let $y=vx \rightarrow \frac{dy}{dx}=v+x\frac{dv}{dx}$ Subtituting: $$x\frac{dv}{dx}+v=\frac{(vx)^2+2x(vx)-2x^2}{x^2-x(vx)+(vx)^2}$$ $$x\frac{dv}{dx}+v=\frac{v^2+2v-2}{v^2-v+1}$$ $$x\frac{dv}{dx}=\frac{v^2+2v-2}{v^2-v+1}-v$$ $$x\frac{dv}{dx}=\frac{v^3-2v^2-v+2}{-v^2+v-1}$$ $$\frac{dx}{x}=\frac{-v^2+v-1}{v^3-2v^2-v+2}dv$$ Integrating left sides: $$\int\frac{-v^2+v-1}{v^3-2v^2-v+2}dv=\int (\frac{1}{2(v-1)}-\frac{1}{2(v+1)}-\frac{1}{v-2}dv=\frac{1}{2}\ln (v-1)-\frac{1}{2}\ln (v+1)-\ln (v-2)=\frac{1}{2}\ln [\frac{v-1}{(v+1)(v-2)^2}]$$ Integrating both sides, hence: $$\frac{1}{2}\ln [\frac{v-1}{(v+1)(v-2)^2}]=\ln x +ln C$$ where $C$ is a constant of integration. $$\ln [\frac{v-1}{(v+1)(v-2)^2}]=2\ln x+ \ln C$$ $$\rightarrow [\frac{v-1}{(v+1)(v-2)^2}]=Cx^2$$ Subtitute when $y=vx $ $$\rightarrow \frac{1-\frac{y}{x}}{(\frac{y}{x}-2)^2(\frac{y}{x}+1)}=Cx^2$$ $$\rightarrow \frac{x^2(x-y)}{(y-2x)^2(x+y)}=Cx^2$$ $$\rightarrow (x-y)=C(y-2x)^2(x+y)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.