Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 109: 7

Answer

\[(b)\;\; y^2-x^2=Kx^3\]

Work Step by Step

$(a)\;$ $x^2+3y^2=2Cy$ ___(1) Differentiate (1) with respect to $x$ $2x+6y\frac{dy}{dx}=2C\frac{dy}{dx}$ ___(2) Put $2C=\frac{x^2+3y^2}{y}$ from (1) in (2) $2x+6y\frac{dy}{dx}=\left(\frac{x^2+3y^2}{y}\right)\frac{dy}{dx}$ $2x=\frac{dy}{dx}\left(\frac{x^2+3y^2-6y^2}{y}\right)$ $\frac{dy}{dx}=\frac{2xy}{x^2-3y^2}$ ____(3) Hence differential equation of (1) is $\frac{dy}{dx}=\frac{2xy}{x^2-3y^2}$. $(b)\;$ Replace $\frac{dy}{dx}$ by $-\frac{dx}{dy}$ in (3) [ for orthogonal trajectories] $-\frac{dx}{dy}=\frac{2xy}{x^2-3y^2}$ $\frac{dy}{dx}=\frac{3y^2-x^2}{2xy}$ $\frac{dy}{dx}=\Large\frac{3\left(\frac{y}{x}\right)^2-1}{\frac{2y}{x}}$ ___(4) Put $v=\frac{y}{x}$ ____(5) $\Rightarrow \frac{dy}{dx}=v+x\frac{dv}{dx}$ (4) becomes $v+x\frac{dv}{dx}=\frac{3v^2-1}{2v}$ $x\frac{dv}{dx}=\frac{3v^2-1}{2v}-v=\frac{v^2-1}{2v}$ $\frac{2v}{v^2-1}dv=\frac{1}{x}dx$ Integrating, $\int\frac{2v}{v^2-1}dv=\int\frac{1}{x}dx$ $\ln|v^2-1|=\ln x+\ln K$ $K$ is constant of integration $v^2-1=Kx$ $\frac{y^2}{x^2}-1=Kx$ $\;\;\;$ [From (5)] $y^2-x^2=Kx^3$ Hence orthogonal trajectories of (1) is $y^2-x^2=Kx^3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.