College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 49

Answer

$x\displaystyle \in \left\{1, \frac{1- \sqrt 3i}{2}, \frac{1+\sqrt 3i}{2} \right\}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^{3}-2x^{2}+2x-1$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| & 1 & -2 & 2 & -1\\ & & 1 & -1 & 1\\ & -- & -- & -- & --\\ & 1 & -1 & 1 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)(x^{2} -x+1)$ c. Solving for the trinomial using the quadratic formula for the quadratic equation of, $ax^2+bx+c$, $x=\frac{-b\pm \sqrt {b^2-4ac}}{2a}$. in this case, $x^2-x+1$, $x=\frac{1\pm \sqrt {(-1)^2-4 \times1\times1}}{2\times1}=\frac{1\pm \sqrt {3}i}{2}$ $x\displaystyle \in\left\{1, \frac{1- \sqrt 3i}{2}, \frac{1+\sqrt 3i}{2}\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.