College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 1, Equations and Graphs - Section 1.4 - Solving Quadratic Equations - 1.4 Exercises - Page 125: 91

Answer

Henry: $4\frac{1}{2}$ hours Irene: $3$ hours

Work Step by Step

Let $t$ h be the time it takes Henry to do the Job. It means that the time it takes Irene to do the Job is $(t-1\frac{1}{2})$ h. The equation corresponding the problem is given by: $\frac{1}{t_{Henry}}+\frac{1}{t_{Irene}}=\frac{1}{t_{Together}}$ $\frac{1}{t}+\frac{1}{t-1\frac{1}{2}}=\frac{1}{1\frac{48}{60}}$ Solve for $t$: $\frac{1}{t}+\frac{1}{t-\frac{3}{2}}=\frac{1}{\frac{9}{5}}$ $\frac{1}{t}+\frac{2}{2t-3}=\frac{5}{9}$ (Multiply by $9t(2t-3)$) $9(2t-3)+18t=5t(2t-3)$ (Simplify) $18t-27+18t=10t^2-15t$ $10t^2-51t+27=0$ (Factorize) $(2t-9)(5t-3)=0$ $t=\frac{9}{2}$ or $t=\frac{3}{5}$ $t=4\frac{1}{2}$ or $t=\frac{3}{5}$ Let us verify both. For $t=\frac{3}{5}$, $t_{Irine}=\frac{3}{5}-1\frac{1}{2}<0$ (Impossible). For $t=4\frac{1}{2}$, $t_{Irine}=4\frac{1}{2}-1\frac{1}{2}=3$. So, the time it takes Henry and Irene to wash the windows is $4\frac{1}{2}$ h and $3$ h, respectively.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.