Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.5 - Solving Quadratic Equations Using the Quadratic Formula - Exercises - Page 522: 51

Answer

$x=5$ Dimensions of the rectangle: $13\,m$ and $7\,m$.

Work Step by Step

$\text{length}\times\text{width}=A$ $\implies (2x+3)(x+2)=91$ $\implies 2x^{2}+7x+6=91$ $\implies 2x^{2}+7x+6-91=0$ $\implies 2x^{2}+7x-85=0$ Identfy $a$, $b$, $c$ from the standard form of a quadratic equation: $ax^2+bx+c=0$ $a=2, b=7$ and $c=-85$. Apply the Quadratic Formula to find the solutions: $x=\frac{-b\pm \sqrt {b^{2}-4ac}}{2a}$ $=\frac{-7\pm \sqrt {7^{2}-4(2)(-85)}}{2(2)}$ $\implies x=5$ or $x=-\frac{17}{2}$ Since $\text{length}$ and $\text{width}$ cannot be negative, $x$ should be equal to $5$. Dimensions of the rectangle are $(2x+3)m=[2(5)+3]\,m=13\,m$ $(x+2)m=(5+2)m=7\,m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.