Answer
$x\approx -3.27$ and $x\approx -6.73$.
Work Step by Step
The given equation is
$\Rightarrow 2x^2+20x+44=0$
Divide each side by $2$.
$\Rightarrow x^2+10x+22=0$
Find the value of $(\frac{b}{2})^2$.
Substitute $10$ for $b$.
$=(\frac{10}{2})^2$
Simplify.
$=(5)^2$
$=25$
Add $3$ to each side of the equation.
$\Rightarrow x^2+10x+22+3=0+3$
Simplify.
$\Rightarrow x^2+10x+25=3$
Write the left side as the square of a binomial.
$\Rightarrow (x+5)^2=3$
Take the square root of each side.
$\Rightarrow x+5=\pm \sqrt{3}$
Subtract $5$ from each side.
$\Rightarrow x+5-5=\pm\sqrt{3}-5$
Simplify.
$\Rightarrow x=\pm\sqrt{3}-5$
The solutions are $x=\sqrt{3}-5\approx -3.27$ and $x=-\sqrt{3}-5\approx -6.73$.