Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 11 - Data Analysis and Displays - 11.1 - Measures of Center and Variation - Exercises - Page 591: 22

Answer

Range $=7.7$ Standard Deviation $=2.6$

Work Step by Step

$$\text{Solution}$$ Given Information: Data Set ⟹ $(8.2, 10.1, 2.6, 4.8, 2.4, 5.6, 7.0, 3.3) $ Total Number of Items in Data Set $n=8$ Formula: Range = Highest Value - Lowest Value Standard Deviation $=\sigma =$ $\frac{\sqrt {\Sigma (|x_i- \mu|)^2}}{n}$ Mean = $\frac {\text{Sum of All Values}}{\text{Total Number of Values}}$ To Find: a)Range b)Standard Deviation Answer: (a) To Find Range: Re-Arrange the Given Data Set in Ascending Order $$2.4, 2.6, 3.3, 4.8, 5.6, 7.0, 8.2, 10.1$$ $$\text{Range = Highest Value - Lowest Value}$$ $$ \text{Range} = 10.1-2.4$$ $$\text{Range} =7.7$$ (b) To Find Standard Deviation: Re-Arrange the Given Data Set in Ascending Order $$2.4, 2.6, 3.3, 4.8, 5.6, 7.0, 8.2, 10.1 $$ Mean = $\frac{2.4+ 2.6+ 3.3+ 4.8+ 5.6+ 7.0+ 8.2+ 10.1 }{8}$ Mean = $\frac{44}{8}$ Mean= $\mu$ = $5.5 $ $x_i=2.4, 2.6, 3.3, 4.8, 5.6, 7.0, 8.2, 10.1 $ $|x_i-\mu|= 3.1, 2.9, 2.2, 0.7, 0.1 ,1.5 ,2.7 ,4.6 $ $|x_i-\mu|^2$= $9.61, 8.41, 4.84, 0.09, 0.001 ,2.25 ,7.29 ,21.16 $ Standard Deviation $=\sigma =$ $\frac{\sqrt {\Sigma (|x_i- \mu|)^2}}{n}$ $=\sigma $ = $\sqrt{\frac{9.61+ 8.41+ 4.84+ 0.09+ 0.001 +2.25 +7.29 +21.16}{8}}$ $=\sigma $= $\sqrt{\frac{54.06}{8}}$ $=\sigma $ = $\sqrt {6.76}$ $=\sigma $ = $2.6$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.