Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 11 - Data Analysis and Displays - 11.1 - Measures of Center and Variation - Exercises - Page 591: 20

Answer

Range $=25$ Standard Deviation $=9.24$

Work Step by Step

$$\text{Solution}$$ Given Information: Data Set ⟹ $(141, 116, 117, 135, 126, 121) $ Total Number of Items in Data Set $n=6$ Formula: Range = Highest Value - Lowest Value Standard Deviation $=\sigma =$ $\frac{\sqrt {\Sigma (|x_i- \mu|)^2}}{n}$ Mean = $\frac {\text{Sum of All Values}}{\text{Total Number of Values}}$ To Find: a)Range b)Standard Deviation Answer: (a) To Find Range: Re-Arrange the Given Data Set in Ascending Order $$116, 117, 121, 126, 135, 141$$ $$\text{Range = Highest Value - Lowest Value}$$ $$ \text{Range} = 141-116 = 25$$ $$\text{Range} =25$$ (b) To Find Standard Deviation: Re-Arrange the Given Data Set in Ascending Order $$116, 117, 121, 126, 135, 141$$ Mean = $\frac{141+116+117+135+126+121}{6}$ Mean = $\frac{756}{6}$ Mean= $\mu$ = $126 $ $x_i=116, 117, 121, 126, 135, 141 $ $|x_i-\mu|= 10,9,5,0,9,15 $ $|x_i-\mu|^2$= $100,81,25,0,81,225 $ Standard Deviation $=\sigma =$ $\frac{\sqrt {\Sigma (|x_i- \mu|)^2}}{n}$ $=\sigma $ = $\sqrt{\frac{100+81+25+0+81+225}{6}}$ $=\sigma $= $\sqrt{\frac{512}{6}}$ $=\sigma $ = $\sqrt {85.33}$ $=\sigma $ = $9.24$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.