Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 6 - 6.4 - Graphs of Sine and Cosine Functions - 6.4 Exercises - Page 465: 76

Answer

$y=3\sin \left(\frac{1}{2}x+\frac{\pi}{8}\right)-1$

Work Step by Step

The sine function is: $$y=a\sin (bx-c)+d$$ Rewriting the equation: $$y=a\sin b\left(x-\frac{c}{b}\right)+d$$ Finding $b$: $$period=\frac{2\pi}{b}$$ $$b=\frac{2\pi}{period}=\frac{2\pi}{4\pi}=\frac{1}{2}$$ With right phase shift of $\frac{\pi}{4}$ or phase shift of $-\frac{\pi}{4}$: $$\frac{c}{b}=-\frac{\pi}{4}$$ $$c=-\frac{\pi}{4}b=-\frac{\pi}{4}\left(\frac{1}{2}\right)=-\frac{\pi}{8}$$ Substituting $a=3,~b=\frac{1}{2},~c=-\frac{\pi}{8}$ and $d=-1$, the function is: $$y=3\sin \left(\frac{1}{2}x-\left(-\frac{\pi}{8}\right)\right)+(-1)$$ $$y=3\sin \left(\frac{1}{2}x+\frac{\pi}{8}\right)-1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.