Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 6 - 6.4 - Graphs of Sine and Cosine Functions - 6.4 Exercises - Page 464: 20

Answer

Both functions have the same amplitudes and periods but the graph of function $g$ is a vertical shift of $2$ units down of function $f$.

Work Step by Step

Using the equation of sine $y=a\cos b(x-c)+d$: For $f(x)=\cos 4x=1\cos 4(x-0)+0$, $a=1$ $period=\frac{2\pi}{b}=\frac{2\pi}{4}=\frac{\pi}{2}$ $horizontal~shift=c=0=none$ $vertical~shift=d=0=none$ For $g(x)=-2+\cos 4x=1\cos 4(x-0)-2$, $a=1$ $period=\frac{2\pi}{b}=\frac{2\pi}{4}=\frac{\pi}{2}$ $horizontal~shift=c=0=none$ $vertical~shift=d=-2$ Thus, both functions have the same amplitudes and periods but the graph of function $g$ is a vertical shift of $2$ units down of function $f$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.