#### Answer

$\frac{9y}{3\times\sqrt[3] (33y^{2})}$

#### Work Step by Step

$\sqrt[3] \frac{9y}{11}$ - Rationalize the numerator
$\sqrt[3] \frac{9y}{11}\times\sqrt[3] \frac{9y}{9y}\times\sqrt[3] \frac{9y}{9y}$ - Multiply by these clever value of 1 to Rationalize top
$\frac{9y}{\sqrt[3] (9\times9\times11\times(y)\times(y))}$ - simplify radicand
$\frac{9y}{3\times\sqrt[3] (33y^{2})}$ - The numerator is rationalized