Answer
$x=333$
Work Step by Step
Recall the definition of a logarithm (pg. 451):
$\log_{b}{x}=y$ iff $b^y=x$
Applying this definition, we get:
$10^3=1+3x$
$1000=1+3x$
$1000-1=3x$
$999=3x$
$\dfrac{999}{3}=x$
$333=x$
We check the answer:
$\log_{10} (1+3\cdot 333)=3$
$\log_{10} (1000)=3$
$\log_{10} (10^3)=3$
$3=3$