Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 12 - Matrices - 12-3 Determinants and Inverses - Practice and Problem-Solving Exercises - Page 788: 15

Answer

$-\dfrac{11}{40}$

Work Step by Step

The determinant of a $2\times2$ matrix $A=\begin{bmatrix}a & b\\c&d \end{bmatrix}$ is given by $ad-bc.$ Hence, the determinant of the given matrix, $ \begin{bmatrix} \dfrac{1}{2}&\dfrac{2}{3}\\\\\dfrac{3}{5}&\dfrac{1}{4} \end{bmatrix}$ is \begin{align*}\require{cancel} & \dfrac{1}{2}\left(\dfrac{1}{4}\right)-\dfrac{3}{5}\left(\dfrac{2}{3}\right) \\\\&= \dfrac{1}{2}\left(\dfrac{1}{4}\right)-\dfrac{\cancel3}{5}\left(\dfrac{2}{\cancel3}\right) \\\\&= \dfrac{1}{8}-\dfrac{2}{5} \\\\&= \dfrac{1}{8}\cdot\dfrac{5}{5}-\dfrac{2}{5}\cdot\dfrac{8}{8} &\text{(change to similar fractions)} \\\\&= \dfrac{5}{40}-\dfrac{16}{40} \\\\&= \dfrac{-11}{40} \\\\&= -\dfrac{11}{40} .\end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.