Answer
$a_n=\sum_{i=1}^n (2i-1) \pi$
Work Step by Step
Now, we have $a_1=\pi (1)^2 =\pi \\a_2=\pi (2)^2 -\pi =3\pi \\a_3=\pi (3)^2 -(2)^2 \pi =5\pi ....$
$a_n= a_1+(n-1)d$
and $a_n= \pi+(n-1) \times 2 \pi=(2n-1) \pi$
Thus,
$a_i=(2i-1) \pi $
and $a_n=\sum_{i=1}^n (2i-1) \pi$