Answer
$g=16.82,-27.82$
Work Step by Step
$g^2+11g-468$
or, $g^2+11g=468$
Compare it with the standard form of quadratic equation $ax^2+bx+c$, we have $a=1, b=11$
Therefore, $b^2=4ac$ $\implies$ $c=\dfrac{b^2}{4a}$
Thus, $c=\dfrac{b^2}{4a}=\dfrac{(11)^2}{4}=\dfrac{121}{4}$
To complete the square, add $\dfrac{121}{4}$ on both sides.
$g^2+11g+\dfrac{121}{4}=468+\dfrac{121}{4}$
$\implies (g+\dfrac{11}{2})^2=\dfrac{1993}{4}$
$\implies (g+\dfrac{11}{2})=22.32$
and
$\implies (g+\dfrac{11}{2})=-22.32$
or, $g=16.82,-27.82$