#### Answer

$_{8}$P$_{6}$ is greater

#### Work Step by Step

You have $_{8}$P$_{6}$ and $_{6}$P$_{2}$ .Solve in order to determine which is greater:
A:
$_{8}$P$_{6}$=$\frac{8!}{(8-6)!}$ -simplify-
$_{8}$P$_{6}$=$\frac{8!}{2!}$ -write using factorial-
$_{8}$P$_{6}$=$\frac{8*7*6*5*4*3*2*1}{2*1}$ -simplify-
$_{8}$P$_{6}$=20160
B:
$_{6}$P$_{2}$=$\frac{6!}{(6-2)!}$ -simplify-
$_{6}$P$_{2}$=$\frac{6!}{4!}$ -write using factorial-
$_{6}$P$_{2}$=$\frac{6*5*4*3*2*1}{4*3*2*1}$ -simplify-
$_{6}$P$_{2}$=30
$_{8}$P$_{6}$ is greater