Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.7 - Introduction to Proofs - Exercises - Page 91: 33

Answer

Answer is given below

Work Step by Step

It is easiest to give proofs by contraposition of ( i) --+ (ii), (ii) --+ ( i), ( i) --+ (iii) , and (iii) --+ ( i). For the first of these, suppose that 3x + 2 is rational, namely equal to p / q for some integers p and q with q -=I- 0. Then we can write x = ( (p/ q) - 2) /3 = (p - 2q) / (3q), where 3q -=I- 0. This shows that x is rational. For the second conditional statement, suppose that x is rational, namely equal to p/q for some integers p and q with q -=I- 0. Then we can write 3x + 2 = (3p + 2q) / q, where q -=I- 0. This shows that 3x + 2 is rational. For the third conditional statement, suppose that x/2 is rational, namely equal to p/q for some integers p and q with q -=I- 0 . Then we can write x = 2p / q, where q -=I- 0 . This shows that x is rational. And for the fourth conditional statement, suppose that xis rational, namely equal to p/q for some integers p and q with q -=I- 0. Then we can write x/2 = p/(2q), where 2q -=I- 0. This shows that x/2 is rational.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.