Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.5 - Nested Quantifiers - Exercises - Page 67: 32

Answer

a) ¬∃z∀y∀x T(x, y, z) ≡ ∀z¬∀y∀x T(x, y, z) ≡ ∀z∃y¬∀x T(x, y, z) ≡ ∀z∃y∃x¬T(x, y, z) b) ¬(∃x∃y P(x, y) ∧ ∀x∀y Q(x, y)) ≡ ¬∃x∃y P(x, y) ∨ ¬∀x∀y Q(x, y) ≡ ∀x¬∃y P(x, y) ∨ ∃x¬∀y Q(x, y) ≡ ∀x∀y ¬P(x, y) ∨ ∃x∃y ¬ Q(x, y) c) ¬∃x∃y(Q(x, y) ↔ Q(y, x)) ≡ ∀x¬∃y(Q(x, y) ↔ Q(y, x)) ≡ ∀x∀y¬(Q(x, y) ↔ Q(y, x)) ≡ ∀x∀y(¬Q(x, y) ↔ Q(y, x)) d) ¬∀y∃x∃z (T(x, y, z) ∨ Q(x, y)) ≡ ∃y¬∃x∃z (T(x, y, z) ∨ Q(x, y)) ≡ ∃y∀x¬∃z (T(x, y, z) ∨ Q(x, y)) ≡ ∃y∀x∀z ¬(T(x, y, z) ∨ Q(x, y)) ≡ ∃y∀x∀z (¬T(x, y, z) ∧ ¬Q(x, y))

Work Step by Step

As we push the negation symbol toward the inside, each quantifier it passes must change its type. For logical connectives we either use De Morgan’s laws or recall that ¬(p → q) ≡ p∧¬q (Table 7 in Section 1.3) and that ¬(p ↔ q) ≡ ¬p ↔ q (Exercise 21 in Section 1.3).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.