Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.5 - Nested Quantifiers - Exercises - Page 67: 29

Answer

$a)∀x∀yP(x,y): P(1,1)∧P(1,2)∧P(1,3)∧P(2,1)∧P(2,2)∧P(2,3)∧P(3,1)∧P(3,2)∧P(3,3)$ $b)∃x∃yP(x,y): P(1,1)∨P(1,2)∨P(1,3)∨P(2,1)∨P(2,2)∨P(2,3)∨P(3,1)∨P(3,2)∨P(3,3)$ $c)∃x∀yP(x,y): (P(1,1)∧P(1,2)∧P(1,3))∨(P(2,1)∧P(2,2)∧P(2,3))∨(P(3,1)∧P(3,2)∧P(3,3))$ $d)∀y∃xP(x,y): (P(1,1)∨P(2,1)∨P(3,1))∧(P(1,2)∨P(2,2)∨P(3,2))∧(P(1,3)∨P(2,3)∨P(3,3))$

Work Step by Step

Initial data: The domain of $P(x,y)P(x, y)$ consists of pairs where $(x,y)(x, y)$ : $x∈{1,2,3} \in \{1, 2, 3\}$ $y∈{1,2,3} \in \{1, 2, 3\}$ The propositions will be expressed using disjunctions $(∨)$ and conjunctions $(∧)$. a) $∀x∀yP(x,y):$ This proposition asserts that $P(x, y)$ is true for all pairs $(x, y)$ in the domain. Step-by-step instructions: 1. We expand the universal quantifier $∀𝑥$: this is equivalent to considering all possible values ​​of $x: 𝑥=1,2,3x=1,2,3.$ 2. For each value of $x$, we expand $∀y$, considering all possible values ​​of $y: 𝑦=1,2,3$ 3. For $∀𝑥∀y𝑃(𝑥,𝑦)$ to be true, we must have the conjunction $(∧)$ of $𝑃(𝑥,𝑦)$ for all pairs. Answer: $$P(1,1)∧P(1,2)∧P(1,3)∧P(2,1)∧P(2,2)∧P(2,3)∧P(3,1)∧P(3,2)∧P(3,3)$$ b) $∃𝑥∃𝑦𝑃(𝑥,𝑦)$: This proposition states that there is at least one pair $(x,y)$ for which $𝑃(𝑥,𝑦)$ is true. Step by step instructions: 1.We expand the existential quantifier $∃𝑥$: this means that we consider that $x$ can be $1,2,or, 3$, but we only need valid $x$ . 2. For each $x$, we expand $∃𝑦$: this means that we consider that $y $ can be $1,2,or,3$, but we only need one valid $y$ . 3. For $∃𝑥∃𝑦𝑃(𝑥,𝑦)$ to be true, it is enough to have the disjunction $( ∨)$ of $𝑃(𝑥,𝑦)$ for all pairs. Answer: $$P(1,1)∨P(1,2)∨P(1,3)∨P(2,1)∨P(2,2)∨P(2,3)∨P(3,1)∨P(3,2)∨P(3,3)$$ c)$∃x∀yP(x,y)$: This proposition states that there is a value of $𝑥$ such that $𝑃(𝑥,𝑦)$ is true for all values ​​of $𝑦$ Step by step instructions: 1. We expand the existential quantifier $∃x$: this means that there is at least one value of $𝑥$ between $1,2,3$ that satisfies the condition. 2. For that specific value of $𝑥$, we expand $∀y$: this means that $𝑃(𝑥,𝑦)$ must be true for all values ​​of $y$. 3. For $∃𝑥∀𝑦𝑃(𝑥,𝑦)$ to be true, we take the disjunction $(∨)$ over the values ​​of $𝑥$, and for each $𝑥$, the conjunction $(∧)$ over the values ​​of $𝑦$. Answer: $$(P(1,1)∧P(1,2)∧P(1,3))∨(P(2,1)∧P(2,2)∧P(2,3))∨(P(3,1)∧P(3,2)∧P(3,3))$$ d)$∀y∃xP(x,y)$: This proposition states that for each value of $y$ ,there is at least one $𝑥$ such that$𝑃(𝑥,𝑦)$ is true. Step by step instructions: 1. We expand the universal quantifier $∀𝑦$: this means that we consider all the values ​​of $y: y=1,2,3.$ 2. For each value of $y$ , we expand the existential quantifier $∃x$: this means that for each $y$, there must be at least a value of $x$ between $1,2,3$ for which $P(x,y)$ is true. 3. For $∀y∃xP(x,y)$ to be true, we take the conjunction $(∧)$ over the values of $y$, and for each $y$, the disjunction $(∨)$ over the values of $x$. Answer: $$(P(1,1)∨P(2,1)∨P(3,1))∧(P(1,2)∨P(2,2)∨P(3,2))∧(P(1,3)∨P(2,3)∨P(3,3))$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.