Materials Science and Engineering: An Introduction

Published by Wiley
ISBN 10: 1118324579
ISBN 13: 978-1-11832-457-8

Chapter 18 - Electrical Properties - Questions and Problems - Page 781: 18.41a


$μ_{e} = 4.59 \times 10^{-3} m^{2}/V-s $

Work Step by Step

Given: A hypothetical metal is known to have an electrical resistivity of $3.3 \times 10^{-8 }(Ω-m)$. A current of 25 A passes through a specimen of this metal 15 mm thick. When a magnetic field of 0.95 tesla is simultaneously imposed in a direction perpendicular to that of the current, a Hall voltage of $-2.4 \times 10^{-7} V $ is measured. Required: electron mobility for this metal Solution: Using Equation 18.4, compute for the conductivity: $σ =\frac{1}{ρ} = \frac{1}{3.3 \times 10^{-8 }(Ω-m)} = 3.03 \times 10^{7} (Ω-m)^{-1}$ Using a combination of Equations 18.20b and 18.18: $μ_{e} = |R_{H}|σ = \frac{|V_{H}|dσ}{I_{x}B_{z}}$ $μ_{e} = \frac{(|-2.4 \times 10^{-7}|)(15 \times 10^{-3} m)(3.03 \times 10^{7} (Ω-m)^{-1})}{(25 A)(0.95 tesla)} = 4.59 \times 10^{-3} m^{2}/V-s $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.