Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 3 - Equilibrium of a Particle - Section 3.3 - Coplanar Force Systems - Problems - Page 102: 27

Answer

$m=26.7 \mathrm{~kg}$

Work Step by Step

At $H$ : $ +\uparrow \Sigma F_y=0 ; \quad F_{H A}=W $ At $A$ : $ \begin{array}{ll} +\uparrow \Sigma F_y=0 ; & F_{A B} \sin 60^{\circ}-W=0 \\ & F_{A B}=1.1547 \mathrm{~W} \\ \pm \Sigma F_x=0 ; & F_{A E}-(1.1547 \mathrm{~W}) \cos 60^{\circ}=0 \\ & F_{A E}=0.5774 \mathrm{~W} \end{array} $ At $B$ : $ \begin{array}{ll} +\uparrow \Sigma F_y=0 ; & F_{B D}\left(\frac{3}{5}\right)-\left(1.1547 \cos 30^{\circ}\right) W=0 \\ & F_{B D}=1.667 \mathrm{~W} \\ \pm \Sigma F_x=0 ; & -F_{B C}+1.667 \mathrm{~W}\left(\frac{4}{5}\right)+1.1547 \sin 30^{\circ}=0 \\ & F_{B C}=1.9107 \mathrm{~W} \end{array} $ By comparison, cord $B C$ carries the largest load. Thus $ \begin{aligned} 500 & =1.9107 W \\ W & =261.69 \mathrm{~N} \\ m & =\frac{261.69}{9.81}=26.7 \mathrm{~kg} \end{aligned} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.