Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 3 - Equilibrium of a Particle - Section 3.3 - Coplanar Force Systems - Problems - Page 102: 26

Answer

$\begin{aligned} & T_{H A}=294 \mathrm{~N} \\ & T_{A B}=340 \mathrm{~N} \\ & T_{A E}=170 \mathrm{~N} \\ & T_{B D}=490 \mathrm{~N} \\ & T_{B C}=562 \mathrm{~N}\end{aligned}$

Work Step by Step

At $H$ : $ \begin{array}{cl} +\uparrow \Sigma F_y=0 ; & T_{H A}-30(9.81)=0 \\ & T_{H A}=294 \mathrm{~N} \end{array} $ At $A$ : $ \begin{array}{ll} +\uparrow \Sigma F_y=0 ; & T_{A B} \sin 60^{\circ}-30(9.81)=0 \\ & T_{A B}=339.83=340 \mathrm{~N} \\ \pm \Sigma F_x=0 ; & T_{A E}-339.83 \cos 60^{\circ}=0 \\ & T_{A E}=170 \mathrm{~N} \end{array} $ At $B$ : $ \begin{array}{ll} +\uparrow \Sigma F_y=0 ; & T_{B D}\left(\frac{3}{5}\right)-339.83 \sin 60^{\circ}=0 \\ & T_{B D}=490.50=490 \mathrm{~N} \\ \stackrel{\mathrm{t}}{\rightarrow} F_x=0 ; & 490.50\left(\frac{4}{5}\right)+339.83 \cos 60^{\circ}-T_{B C}=0 \\ & T_{B C}=562 \mathrm{~N} \end{array} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.