Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 3 - Equilibrium of a Particle - Section 3.3 - Coplanar Force Systems - Problems - Page 100: 14

Answer

$\begin{aligned} & x_{A D}=0.4905 \mathrm{~m} \\ & x_{A C}=0.793 \mathrm{~m} \\ & x_{A B}=0.467 \mathrm{~m}\end{aligned}$

Work Step by Step

$ \begin{gathered} F_{A D}=2(9.81)=x_{A D}(40) \quad x_{A D}=0.4905 \mathrm{~m} \\ \Rightarrow \Sigma F_x=0 ; \quad F_{A B}\left(\frac{4}{5}\right)-F_{A C}\left(\frac{1}{\sqrt{2}}\right)=0 \\ +\uparrow \Sigma F_y=0 ; \quad F_{A C}\left(\frac{1}{\sqrt{2}}\right)+F_{A B}\left(\frac{3}{5}\right)-2(9.81)=0 \\ F_{A C}=15.86 \mathrm{~N} \\ x_{A C}=\frac{15.86}{20}=0.793 \mathrm{~m} \\ F_{A B}=14.01 \mathrm{~N} \\ x_{A B}=\frac{14.01}{30}=0.467 \mathrm{~m} \end{gathered} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.