Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 22 - Vibrations - Section 22.2 - Energy Methods - Problems - Page 662: 39

Answer

$$ f=1.28 \mathrm{~Hz} $$

Work Step by Step

$$ \begin{aligned} & \phi=\frac{1.5 \theta_{\max }}{0.75} \\ & \Delta=0.75(1-\cos \phi) \\ & \cong 0.75\left(1-1+\frac{\phi^2}{2}\right) \\ & =0.75\left(\frac{4 \theta_{\max }^2}{2}\right) \\ & \Delta G=\frac{1}{2} \Delta=0.75 \theta_{\max }^2 \\ & T_{\max }=\frac{1}{2} I_A \omega_{\max }^2 \\ & =\frac{1}{2}\left[\frac{1}{3}\left(\frac{4(1.5)}{32.2}\right)(1.5)^2\right] \omega_n^2 \theta_{\max }^2 \\ & =0.0699 \omega_n^2 \theta_{\max }^2 \\ & V_{\max }=W \Delta_G=4(1.5)\left(0.75 \theta_{\max }^2\right) \\ & T_{\max }=V_{\max } \\ & 0.0699 \omega_n^2 \theta_{\max }^2=4.5 \theta_{\text {max }}^2 \\ & \omega_n^2=64.40 \\ & \omega_n=8.025 \mathrm{rad} / \mathrm{s} \\ & f=\frac{\omega_n}{2 \pi}=\frac{8.025}{2 \pi}=1.28 \mathrm{~Hz} \\ & \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.