Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 22 - Vibrations - Section 22.2 - Energy Methods - Problems - Page 662: 38

Answer

$$ \tau=\pi \sqrt{\frac{m}{k}} $$

Work Step by Step

$$ \begin{gathered} T+V=\text { const. } \\ T=\frac{1}{2} m(\dot{y})^2 \\ V=m g y+\frac{1}{2}(4 k)(\Delta s-y)^2 \\ T+V=\frac{1}{2} m(\dot{y})^2+m g y+\frac{1}{2}(4 k)(\Delta s-y)^2 \\ m \ddot{y} \ddot{y}+m g \dot{y}-4 k(\Delta s-y) \dot{y}=0 \\ m \ddot{y}+m g+4 k y-4 k \Delta s=0 \end{gathered} $$ Since $\Delta s=\frac{m g}{4 k}$ Then $$ \begin{gathered} m \ddot{y}+4 k y=0 \\ y+\frac{4 k}{m} y=0 \\ \omega_n=\sqrt{\frac{4 k}{m}} \\ \tau=\frac{2 \pi}{\omega_n}=\pi \sqrt{\frac{m}{k}} \end{gathered} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.