Answer
$\rho=1280$ ft
$a_t=8.66$ ft/s^2
Work Step by Step
The tangential acceleration is:
$a_t=a\cos 30 = 10 \cos 30 = 8.66 ft/s^2$
and the normal acceleration is $a_n=a\sin 30 = 10 \sin 30 = 5.00 ft/s^2$.
Applying
$a_n=\frac{v^2}{\rho}$, we have
$\rho=\frac{v^2}{a_n}=\frac{80^2}{5.00}=1280$ ft