Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 12 - Kinematics of a Particle - Section 12.2 - Rectilinear Kinematics: Continuous Motion - Problems - Page 18: 16

Answer

t=3.27s s=6.53m

Work Step by Step

$ds=\frac{vdv}{a}$ $\int _0^s\:ds\:=\int _6^v\:\frac{v}{-1.5v^{\frac{1}{2}}}dv$ $s=\int _6^v\:-0.6667v^{\frac{1}{2}}\:dv$ =$\left(6.532-0.4444v^{\frac{3}{2}}\right)m$ If v = 0, $\left(6.532-0.4444\left(0\right)^{\frac{3}{2}}\right)m\:=\:6.53m$ The time needed for the particle to stop $dt=\:\frac{dt}{a}$ $\int _0^t\:dt\:=-\int _6^v\:\frac{dv}{1.5v^{\frac{1}{2}}}$ $t\:=-1.333\cdot \left(v^{\frac{1}{2}}\right)\left(from\:6\:to\:v\right)=\left(3.266-1.333v^{\frac{1}{2}}\right)s$ Thus, when v = 0 =$\left(3.266-1.333\left(0\right)^{\frac{1}{2}}\right)=3.27s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.