Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 12 - Kinematics of a Particle - Section 12.2 - Rectilinear Kinematics: Continuous Motion - Problems - Page 18: 15

Answer

Position = $s=\frac{2\left(2kt+\left(\frac{1}{v_{o^2}}\right)\right)^{\frac{1}{2}}}{2k}$ Velocity = $=\left(2kt+\left(\frac{1}{v_o^2}\right)\right)^{\frac{-1}{2}}$

Work Step by Step

$a=\frac{dv}{dt}=-kv^3$ $\int _{v0}^v\:v^3dv=\int _0^t\:-k\:dt$ $-\frac{1}{2}\left(v^{-2}-v_o^{-2}\right)=-kt$ Velocity $=\left(2kt+\left(\frac{1}{v_o^2}\right)\right)^{\frac{-1}{2}}$ $ds\:=vdt$ $\int _0^sds=\int _0^t\:\:\frac{dt}{\left(2kt+\left(\frac{1}{v_0^2}\right)\right)^{\frac{1}{2}}}$ Position $s=\frac{2\left(2kt+\left(\frac{1}{v_{o^2}}\right)\right)^{\frac{1}{2}}}{2k}$ Substituting the limits: $s=\frac{2\left(2kt+\left(\frac{1}{v_{o^2}}\right)\right)^{\frac{1}{2}}}{2k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.