Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 10 - Moments of Inertia - Section 10.8 - Mass Moment of Inertia - Problems - Page 571: 85

Answer

$I_{mx}=\frac{2}{5}mb^2$

Work Step by Step

We can find the required moment of inertia as follows: $m=\int_{-a}^a dm$ $\implies m=\int_{-a}^a \rho \pi y^2 dx$ $\implies m=\int_{-a}^a \rho \pi(1-\frac{x^2}{a^2})dx $ $\implies m=2\rho \pi b^2 (x-\frac{x^3}{3a^2})$ $\implies m=\frac{4}{3\rho \pi b^2 a}$ Now, $dI_{mx}=\frac{dm}{2}y^2$ $\implies dI_{mx}=\frac{dm}{2}b^2(1-\frac{x^2}{a^2})$ $\implies dI_{mx}=\frac{\rho \pi}{2}b^4(1-\frac{x^2}{a^2})^2dx$ We know that $I_{mx}=\int dI_{mx}$ $\implies I_{mx}=\frac{\rho \pi}{2}b^4 \int_{-a}^a (1-\frac{x^2}{a^2})^2dx$ $\implies I_{mx}=\rho \pi b^4 (x+\frac{x^5}{5a^4}-\frac{2x^3}{3a^2})$ This simplifies to: $I_{mx}=\frac{2}{5}mb^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.