Answer
The encrypted message is 24.
Work Step by Step
Sure, to encrypt the message 1111 using RSA public-key encryption with the public keys \( n=119 \) and \( e=5 \), we use the formula:
\[ \text{CipherText} = (1111)^e \mod n \]
Substituting the values, we get:
\[ \text{CipherText} = (1111)^5 \mod 119 \]
\[ \text{CipherText} = (9\cdot 119+40)^5 \mod 119= 40^5\mod 119 \]
\[ \text{CipherText} = (119\left(860504\right)+24)\mod 119=24 \]
So, the encrypted message is 24.