Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1054: 61

Answer

See the detailed answer below.

Work Step by Step

First of all, we need to find the resistance of each lightbulb. We know that the maximum power dissipated in each bulb that allows it to work without blowing up is given by $$P=\dfrac{V_{\rm rms}^2}{R}$$ So, $$R=\dfrac{V_{\rm rms}^2}{P}$$ So, $$R_1=\dfrac{V_{\rm rms}^2}{P_{(\rm 40 W)}}=\dfrac{(120)^2}{40}=\bf 360\;\rm \Omega$$ $$R_2=\dfrac{V_{\rm rms}^2}{P_{(\rm 60 W)}}=\dfrac{(120)^2}{60}=\bf 240\;\rm \Omega$$ $$R_3=\dfrac{V_{\rm rms}^2}{P_{(\rm 100W)}}=\dfrac{(120)^2}{100}=\bf 144\;\rm \Omega$$ Now to find the actual power dissipated in each bulb, we need to find the $\rm rms$ current that passes through each one of them. We can see that $R_1$ and $R_2$ are in series, so they have the same current $I_{\rm rms,1}$ while $R_3$ is in parallel to the two in series bulbs, so it has a current of $I_{\rm rms,2}$. $$I_{\rm rms,1}=\dfrac{\varepsilon_{\rm rms}}{R_1+R_2}=\dfrac{120}{360+240}=\bf \frac{1}{5}\;\rm A$$ $$I_{\rm rms,2}=\dfrac{\varepsilon_{\rm rms}}{ R_3}=\dfrac{120}{144}=\bf \frac{5}{6}\;\rm A$$ The actual power dissipated in each bulb is given by $$P_1=I_{\rm rms,1}^2R_1=\left(\frac{1}{5}\right)^2(360)=\color{red}{\bf 14.4}\;\rm W$$ $$P_2=I_{\rm rms,1}^2R_2=\left(\frac{1}{5}\right)^2(240)=\color{red}{\bf 9.60}\;\rm W$$ $$P_3=I_{\rm rms,2}^2R_3=\left(\frac{5}{6}\right)^2(144)=\color{red}{\bf 100}\;\rm W$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.