Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1054: 62

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know that the average power supplied by the emf, for the three wires, is given by $$P_{\rm source}=P_1+P_2+P_3$$ $$P_{\rm source}=I_{\rm rms}\varepsilon_{\rm rms}+I_{\rm rms}\varepsilon_{\rm rms}+I_{\rm rms}\varepsilon_{\rm rms}$$ Hence, $$I_{\rm rms}=\dfrac{P_{\rm source}}{3\varepsilon_{\rm rms}}\tag 1$$ Plug the known; $$I_{\rm rms}=\dfrac{(450\times 10^6)}{3(120)}$$ $$I_{\rm rms}=\color{red}{\bf 1.25\times 10^6}\;\rm A$$ $$\color{blue}{\bf [b]}$$ Plugging the new data into (1), $$I_{\rm rms}=\dfrac{(450\times 10^6)}{3(500\times 10^3)}$$ $$I_{\rm rms}=\color{red}{\bf 300}\;\rm A$$ $$\color{blue}{\bf [b]}$$ Any cable wouldn't be able to handle a current of 1.25 million A, it will melt, but it can handle the 300 A. That's why the step-up transformers are used here.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.