Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1054: 60

Answer

a) ${\bf 4.873\times 10^{-7}}\;\rm H$ b) ${\bf 10.9 }\;\rm \Omega$

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know, for $RLC$-circuits, that the resonance frequency occurs when $$X_L=X_C$$ $$2\pi f L=\dfrac{1}{2\pi f C}$$ Hence, $$L=\dfrac{1}{4\pi f^2 C}$$ Plug the known; where $f=\dfrac{f_{max}+f_{min}}{2}=\dfrac{60+54}{2}=\bf 57\;\rm MHz$ $$L=\dfrac{1}{4\pi^2 (57\times 10^6)^2 (16\times 10^{-12})}$$ $$L=\color{red}{\bf 4.873\times 10^{-7}}\;\rm H$$ $$\color{blue}{\bf [b]}$$ The peak current at the resonance frequency is $$I=\dfrac{\varepsilon_0}{Z} =\dfrac{\varepsilon_0}{\sqrt{(X_L-X_C)^2+R^2}}$$ where at the resonance frequency $X_L=X_C$, so $Z=R$ $$I =\dfrac{\varepsilon_0}{R}$$ The current at the end frequency is $$I'=\dfrac{1}{2}I=\dfrac{1}{2}\dfrac{\varepsilon_0}{R}$$ where $I'=\varepsilon_0/Z=\varepsilon_0/\sqrt{(X_L-X_C)^2+R^2}$ $$ \dfrac{ \color{red}{\bf\not} \varepsilon_0}{\sqrt{(X_L-X_C)^2+R^2}} =\dfrac{1}{2}\dfrac{ \color{red}{\bf\not} \varepsilon_0}{R}$$ Squaring both sides; $$ \dfrac{ 1}{ (X_L-X_C)^2+R^2} = \dfrac{ 1}{4R^2}$$ Hence, $$4R^2= (X_L-X_C)^2+R^2 $$ $$3R^2= (X_L-X_C)^2 $$ $$R =\sqrt{ \dfrac{(X_L-X_C)^2 }{3}}$$ $$R =\dfrac{|X_L-X_C|}{\sqrt{ 3}}$$ where $X_L=\omega L=2\pi fL$, and $X_C=1/2\pi fC$ $$R =\dfrac{\left|2\pi f L-\dfrac{1}{2\pi f C}\right|}{\sqrt{3}}$$ Plug the known for $f_{\rm max}$; $$R =\dfrac{\left|2\pi (60\times 10^6)(4.873\times 10^{-7})-\dfrac{1}{2\pi (60\times 10^6)(16\times 10^{-12})}\right|}{\sqrt{3}}$$ $$R_1=\bf 10.35\;\rm \Omega$$ Plug the known for $f_{\rm min}$; $$R_2 =\dfrac{\left|2\pi (54\times 10^6)(4.873\times 10^{-7})-\dfrac{1}{2\pi (54\times 10^6)(16\times 10^{-12})}\right|}{\sqrt{3}}$$ $$R_2=\bf 10.9\;\rm \Omega$$ It is obvious now that the minimum possible value of the circuit’s resistance is 10.9 Ohm. $$R_{\rm min}=\color{red}{\bf 10.9 }\;\rm \Omega$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.