Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 33 - Electromagnetic Induction - Exercises and Problems - Page 1001: 71

Answer

${\bf 0.5}\;\rm m$

Work Step by Step

Recalling that the inductance is given by $$L=\dfrac{\mu_0N^2A}{l}$$ $$L=\dfrac{\mu_0N^2\pi r_{\rm sol}^2}{l}\tag 1$$ The inductor length is given by $$l=ND_{\rm wire}\tag 2$$ where $D_{\rm wire}$ is the diameter of the wire. So, $$N=\dfrac{ l}{ D_{\rm wire}}$$ Plug into (1), $$L=\dfrac{ \mu_0l^2\pi r_{\rm sol}^2}{ D^2_{\rm wire}l} $$ $$L=\dfrac{ \mu_0l \pi r_{\rm sol}^2}{ D^2_{\rm wire} } $$ Solving for $l$; $$l=\dfrac{ D^2_{\rm wire}L } { \pi \mu_0 r_{\rm sol}^2}\tag 3$$ Recalling that $$\omega=2\pi f=\dfrac{1}{\sqrt{LC}}$$ Hence, $$L=\dfrac{1}{4\pi^2f^2C}$$ Plug into (3), $$l=\dfrac{ D^2_{\rm wire} } { \mu_0 \pi r_{\rm sol}^2(4\pi^2f^2C) } $$ $$l=\dfrac{ D^2_{\rm wire} } {4\mu_0 \pi^3 r_{\rm sol}^2 f^2C } $$ Plug the known; $$l=\dfrac{ (0.25\times 10^{-3})^2 } {4(4\pi\times 10^{-7})\pi^3 (0.02)^2 (1)^2(1) } =\bf 1\;\rm m$$ And since the wire is wrapped on the cylinder in 2 layers, so $$l_{\rm sol}=\dfrac{l}{2}=\dfrac{1}{2}$$ $$l_{\rm sol}=\color{red}{\bf 0.5}\;\rm m$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.